隐私提示:本站使用Microsoft Clarity统计访客信息,关于我将收集你的具体何种信息及如何禁止我收集你的信息请点击这里.
Maxwell Equations(Differential)
Gauss’s Law:
\[\nabla\cdot\mathbf{\vec{E}} =\frac{\rho}{\varepsilon_0} \\
\nabla\cdot \mathbf{\vec{B}}=0\]
Circuital Law:
\[\nabla\times\mathbf{\vec{E}}=-\frac{\partial\mathbf{\vec{B}}}{\partial t}\\
\nabla\times\mathbf{\vec{B}}=\mu_0\left (\mathbf{\vec{J}}+\varepsilon_0 \frac{\partial\mathbf{\vec{E}}}{\partial t}\right )\]
Maxwell Equations(Integral)
Gauss’s Law:
\[\iint_{\partial\Omega}\mathbf{\vec{E}}\cdot d\mathbf{\vec{S}}=\frac{1}{\varepsilon_0}\iiint_\Omega \rho dV \\
\iint_{\partial\Omega}\mathbf{\vec{B}}\cdot d\mathbf{\vec{S}}=0 \\\]
Circuital Law:
\[\oint_{\partial\Sigma}\mathbf{\vec{E}}\cdot d{\vec{l}}=-\frac{d}{dt}\iint_\Sigma \mathbf{\vec{B}}\cdot d\mathbf{\vec{S}} \\
\oint_{\partial\Sigma}\mathbf{\vec{B}}\cdot d\mathbf{\vec{l}}=\mu_0\left (\iint_\Sigma\mathbf{\vec{J}}\cdot d\mathbf{\vec{S}}+\varepsilon_0\frac{d}{dt}\iint_\Sigma\mathbf{\vec{E}}\cdot d\mathbf{\vec{S}} \right )\]